
- 1. Which element has the electron configuration $1s^22s^22p^63s^23p^2$?
 - (a) Mg
 - (b) S
 - (c) Si
 - (d) Se
 - (e) Ga
- 2. The X^{3-} ion with the following electron configuration is formed from:

- (a) oxygen.
- (b) nitrogen.
- (c) phosphorus.
- (d) aluminum.
- (e) magnesium.
- ____ 3. The figure is a portion of a plot of:

Atomic Number

- (a) Highest principal quantum number vs. atomic number.
- (b) 1st ionization energy vs. atomic number.
- (c) Electron affinity vs. atomic number.
- (d) Atomic radius vs. atomic number.
- (e) Atomic charge vs atomic number.
- 4. Place the following atoms in order of INCREASING atomic radii: Ca, Mg, P, and Cl.
 - (a) Ca < Cl < P < Mg
 - (b) Mg < P < Cl < Ca
 - (c) Ca < Mg < P < Cl
 - (d) P < Cl < Mg < Ca
 - (e) Cl < P < Mg < Ca

5. An element in period 2 has the following values of its first four ionization energies:

 $IE_1 = 0.80 \text{ MJ/mol}$

 $IE_2 = 2.42 \text{ MJ/mol}$

 $IE_3 = 3.66 \text{ MJ/mol}$

 $IE_4 = 25.02 \text{ MJ/mol}$

What is the element?

- (a) Be
- (b) B
- (c) C
- (d) N
- (e) O

6. What is the formula of the oxide of Al?

- (a) AlO
- (b) AlO₂
- (c) AlO₃
- (d) Al_2O_2
- (e) Al_2O_3

7. Consider the following data for lattice energies of alkaline earth oxides:

Metal Oxide	Lattice Energy (kJ/mol)		
MgO	-3795		
CaO	-3414		
SrO	-3217		
BaO	-3029		

The trend in this data can best be explained by the following:

- (a) The electron configuration of each atom
- (b) The electron affinity of each atom.
- (c) The radius of each atom.
- (d) The radius of each ion.
- (e) The charge on each ion.

8. Use the following information to calculate the first ionization energy of Li.

$$LiF(s) \rightarrow Li^{+}(g) + F^{-}(g)$$

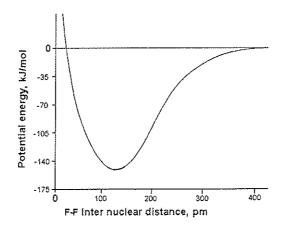
1050 kJ/mol LiF

$$\text{Li}(s) + \frac{1}{2} F_2(g) \rightarrow \text{Li}F(s)$$

–617 kJ/mol Li

$$F_2(g) \rightarrow 2 F(g)$$

160 kJ/mol F₂


$$Li(s) \rightarrow Li(g)$$

161 kJ/mol Li

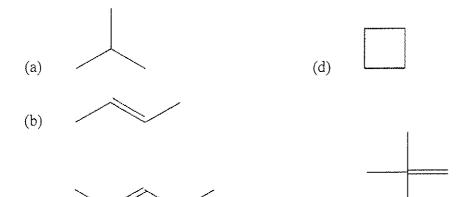
$$F(g) \rightarrow F^{-}(g)$$

-328 kJ/mol F

- (a) 216 kJ/mol Li
- (b) 346 kJ/mol Li
- (c) 426 kJ/mol Li
- (d) 440 kJ/mol Li
- (e) 520 kJ/mol Li
- 9. Determine the bond length of F_2 from the Morse curve:

- (a) 52 pm
- (b) 128 pm
- (c) 384 pm
- (d) -120 kJ/mol
- (e) 155kJ/mol
- 10. Which of these molecules is NOT planar?
 - (a) NI₃
 - (b) XeF₄
 - (c) BF_3
 - (d) SO_3
 - (e) $CF_2=CF_2$

_ 11. Use VSEPR theory to predict the electron-pair geometry and the molecular geometry of iodine trichloride, ICl₃.


	Electron-pair Geometry	Molecular Geometry	
(a)	Trigonal planar	Trigonal pyramidal	
(b)	Tetrahedral	Trigonal planar	
(c)	Tetrahedral	Trigonal planar	
(d)	Trigonal bipyramidal	Trigonal	
(e)	Trigonal bipyramidal	T-shaped	

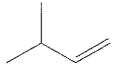
12. Identify the geometry about atoms X and Y:

Atom X		Atom Y		
(a)	linear	T-shaped		
(b)	Bent	trigonal planar		
(c)	tetrahedral	trigonal planar		
(d)	tetrahedral	trigonal pyramidal		
(e)	linear	trigonal pyramidal		

- ___ 13. What are the O-S-O bond angles in SO₃?
 - (a) All equal to 109.5 degrees.
 - (b) All equal to 120 degrees.
 - (c) All smaller than 109.5 degrees.
 - (d) Two are greater than 120 degrees and one is less than 120 degrees.
 - (e) Two are less than 120 degrees and one is greater than 120 degrees.

- 14. Which compound contains both ionic and covalent bonds?
 - (a) CaCl₂
 - (b) CH₃CO₂H
 - (c) ClNO₂
 - (d) K_2S
 - (e) NaNO₂
- 15. Which is the structure for butene?

16. What is the formal charge on the C atom in this structure of the CNO ion?


$$\left[\ddot{\mathbf{C}} = \mathbf{N} = \ddot{\mathbf{C}}\right]^{-1}$$

(e)

- (a) -2
- (b) -1

(c)

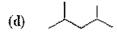
- (c) 0
- (d) +1
- (e) +2
- 17. What is the molecular formula for the following structure?

- (a) C_5H_{11}
- (b) C_4H_5
- (c) C_5H_{10}
- (d) C_4H_{10}
- (e) C_5H_9

18. What can you say about the energy change in the following reaction?

C-C = 346 kJ/mol

C=C = 610 kJ/mol


C-H = 413 kJ/mol

H-H = 436 kJ/mol

- (a) This reaction is isothermic.
- (b) This reaction is endothermic.
- (c) This reaction is exothermic.
- (d) This reaction is energy neutral ($\Delta H = 0$).
- (e) The energy change will depend on which isomer is present.

__ 19. Identify an isomer of the following molecule:

(a)

(b)

(e) _____

(c)

20. Which of the functional groups listed are present in the following molecule?

- I. hydroxyl
- III. carboxylic acid
- II. carbonyl
- IV. amine

- (a) I, IV
- (b) I, II, IV
- (c) I, III, IV
- (d) II, III, IV
- (e) III, IV

END OF EXAM

- 1) Please make sure that you have entered 20 answers on your scan sheet.
- 2) Make sure that you have entered your name, ID number, and lab section number (4 digits).
- 3) You MUST turn the scan sheet in to your TA before leaving the exam!

		•